/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Build Management

VeV Motivation

AARHUS UNIVERSITET

« QOracle provides Java SDK free of charge
— provides standard command line tools: javac, java, ...

« These are sufficient only for small systems
— javac only compile one directory at a time
— javac recompiles everything every time
« Large systems require many tasks
— manage resources (graphics, sound, config files)
— deployment (making jars, copying files, upload to repos)
— management (javadoc, coverage, version control)
* Reliability require reliable processing
— Creating the system exactly the same way every time

/v

AARHUS UNIVERSITET

 Intellid, Visual Studio, etc. include
build management tools
— Compile all (touched) files, etc.

« But what do you do when your
code is on a server in Helsinki?
— Only the “shell/commandline” available

P root@baerbak-23: ~

Project New

© [3paystati & Cut
grac & Copy
[D.idea Copy Path/Reference...

build @ paste

[grad!
~ Osrc Find Usages
“B8M Eindin Files..
vE Replace in Files...
Analyze
Refactor
Bookmarks

~ [ote
= g = Reformat Code

~ Optimize Imports

Remove Module
= .atta
@ gitig Build Module 'paystation-tdd-iteration-0.test'
3 L

ot = Run 'All Tests'
ad

= gradl
Ms REAL More Run/Debug

&2

ms Test|

Open In

ption-tdd-iteration-0.test'

Modern IDEs hide the fact

/v Build-Management

AARHUS UNIVERSITET
* This problem is denoted:

Definition: Build management

The process of managing and constructing an executable software sys-
tem from its parts in a reliable and cost-efficient way.

« Computer Scientists’ standard solution: a tool...
* The tool read a build-description

Definition: Build description

A description of the goals and means for managing and constructing an
executable software system. A build description states targets, dependen-
cies, procedures, and properties.

« Example: Make (Feldmann, 1979)

- History...

AARHUS UNIVERSITET

€9 emacs@RAROTONGA

e Make File Edit_Options _ Buffers _Tools _Makefile Help :

= —ansi -Wall
-DINTERACTIVE

gcc —0 gatg

mv gatg

CS@AU Henrik Baerbak Christensen 5

/v The Two Ways

AARHUS UNIVERSITET

 Programming languages comes in flavors

— Procedural languages
» ‘express how to achieve a goal’

— Declarative languages
» ‘express what goal you want to achieve’

« Old time build languages were procedural (ex: make, Ant)
— Write code to compile all source files

* Modern build languages are declarative (almost)
— ‘compiledJava’ is built into the system

/v Script Parts

AARHUS UNIVERSITET

o A target. This is the goal that I want, like “compile all source code files.”

o A list of dependencies. Targets depend upon each other: in order to execute
you must first have compiled all source code. Thus the execution target de-
pends upon the compilation target. The build description must provide a way
to state such dependencies.

e Procedures. The procedures are associated with the targets and describe how
to meet the goal of the target, like how to compile the system. For instance
the compile goal must have an associated procedure that describes the steps
necessary to compile all source files—in this case call javac on all files.

e A set of properties. Variables and constants are important to improve readabil-
ity in programming languages, and build descriptions are no different. Proper-
ties are variables that you can assign a value in a single place and use it in your
procedures.

Henrik Baerbak Christensen 7

/v Apache Ant

AARHUS UNIVERSITET

* Antis a build-management tool geared towards Java

— © has some strong build-in behavior
* javac on source trees and does smart recompile

— © independent of large IDEs

— ® was created on the XML buzzword wave so it is verbose

— @ is very evolutionary in its design

» Do the same thing in a zillion different ways
— No ‘conceptual integrity’

/v Example

AARHUS UNIVERSITET

« Targets
— ‘test’ ...

 Dependencies
— ‘test’ d.o. ‘build-all’ d.o. ...

* Procedures

— <javac....>

* Properties
— {$build-directory}

<property name="source-directory" value="src"/>
<property name="test-source-directory" value="test"/>
<property name="build-directory" value="build"/>
<property name="javadoc-directory" value="javadoc"/>

<property name="junit-jar" value="lib/junit-4.12.jar"/>
<property name="hamcrest-jar" value="1lib/hamcrest-core-1.3.jar"/>

Henrik Baarbak

<target name="clean">
<delete dir="${build-directory}"/>
<delete dir="${javadoc-directory}"/>
<delete dir="${test-output-directory}"/>
</target>

<target name="prepare“>
<mkdir dir="${build-directory}"/>
<mkdir dir="${javadoc-directory}"/>
</target>

<target name="build-src" depends="prepare">
<javac srcdir="${source-directory}"
includeAntRuntime="false"
debug="true"
destdir="${build-directory}">
<classpath refid="class-path"/>
</javac>
</target>

<target name="build-test" depends="build-src">
<javac srcdir="${test-source-directory}"
includeAntRuntime="false"
debug="true"
destdir="${build-directory}">
<classpath refid="class-path"/>
</javac>
</target>

<target name="build-all" depends="build-src,build-test"/>

<target name="test" depends="build-all">
<java classname="org.junit.runner.JUnitCore">
<arg value="paystation.domain.TestPayStation"/>
<classpath refid="class-path"/>
</java>
</target>

kd csdev@csdev: ~/proj/tdd-paystation

v File Edit Tabs Help A I
daemon X | cmd X s n

AARHUS U csdev@csdev:~/proj/tdd-paystation$ ant clean

Buildfile: /home/csdev/proj/tdd-paystation/build.xml

clean:
[delete] Deleting directory /home/csdev/proj/tdd-paystation/build
[delete] Deleting directory /home/csdev/proj/tdd-paystation/javadoc
[delete] Deleting directory /home/csdev/proj/tdd-paystation/TEST-RESULT

BUILD SUCCESSFUL

Total time: 0 seconds
csdev@csdev:~/proj/tdd-paystation$ ant test
Buildfile: /home/csdev/proj/tdd-paystation/build.xml

prepare:
[mkdir] Created dir: /home/csdev/proj/tdd-paystation/build
[mkdir] Created dir: /home/csdev/proj/tdd-paystation/javadoc

build-src:
[javac] Compiling 4 source files to /home/csdev/proj/tdd-paystation/build

build-test:
[javac] Compiling 1 source file to /home/csdev/proj/tdd-paystation/build

[java] JUnit version 4.12
[java] .

[java] Time: 0.006

[javal

[java] OK (1 test)

[javal

BUILD SUCCESSFUL
Total time: O seconds
csdev@csdev:~/proj/tdd-paystations [

CS@AU Henrik Baerbak Christensen 10

/v

AARHUS UNIVERSITET

Gradle in SWEA

In 2018 Ant was put to rest...

VeV Gradle

AARHUS UNIVERSITET

« Gradle is a convention-based build-management tool
— Convention over configuration is the mantral

 Which means

— You cannot see a damn thing about what it does in its build
description (build.gradle) I ® ® ®

— You have to know all the conventions or google your butts off ®
« Conventions:
— Afixed set of targets are defined (compiledava, test, ...)

— The source folder hierarchy and naming are hard coded!
— The ‘build description’ is in build.gradle in the project root

« ADit of help: ‘gradle tasks’ will display all known targets.

eV And One BIG Nuisance

AARHUS UNIVERSITET

« Gradle developers are not afraid of none-backward-
compatible changes ® ® ®

— Indeed they syntax and semantics have slightly or in code-

breaking ways changed 30 times since | started using Gradle

22482
== =

« So many hours wasted on absolutely nothing...

— Beware of slides that may contain old-style gradle ®

/v Gradle build.gradle

AARHUS UNIVERSITET

« The simplest build.gradle file for java dev, contains one
line plugins {
id "java’
— 20Dl pleghe—ara__ |
« And now you can do all basic BM tasks (except running a
program! ©) e

repositories {
- gradle teSt } Jeenresll plugir;sl{ .
id 'java
 Will compile all production =40 ... §
} repositories {
code, all test code, and mavenCentral ()

}

dependencies {

execute all Junit code . R
in the ‘test’ source tree e T e

testRuntimeOnly group: 'org.junit.jupiter',
name: 'junit-jupiter-engine', version: '5.6.2°

testImplementation group: 'org.hamcrest',
name: 'hamcrest-library', version: '
}

fest {

uselJUnitPlatform()

CS@AU Henrik Baerbak Christensen }

/v Gradle

AARHUS UNIVERSITET
 How does it work? Magic???
* By convention

— You must put your code in the right folders!
» src/main/java/HERE
» src/test/java/HERE

— Predefined targets
» Like ‘test’, ‘compiledJava’, ...

* By plugins

— Which are procedural groovy code to inject into the gradle
framework

 (‘framework’ is a central topic of this course)

/v

AARHUS UNIVERSITET

Gradle

« Gradle is also a dependency-management tool

e EX: we need
hamcrest

plugins {
id 'java'

}

repositories {
mavenCentral()

}

dependencies {
testImplementation group: 'org.junit.jupiter',
name: 'junit-jupiter-api', version: '5.6.2'
testRuntimeOnly group: 'org.junit.jupiter',
name: 'junit-jupiter-engine', version: '5.6.2'

testImplementation group: ‘'org.hamcrest’,
name: 'hamcrest-library', version: '2.2'

}

fest {

useJUnitPlatform()
}

« Gradle will download ‘org.hamcrest....:2.2" from MavenCentral on the
internet, and set the classpath correctly

CS@AU

Henrik Baerbak Christensen 16

J MavenCentral

AARHUS UNIVERSITET
* Find libraries on ‘www.mvnrepository.com’

MVNresosirory (s | sea

Repository Found 4307 results
- Central 2.9 Home » org.junit.jupiter » junit-jupiter-api » 5.7.1
Sort: relevance | popular | newest
® | Sonatype 987
Sprna pluaine =t - Junit Jupiter AP1 JUnit Jupiter API » 5.7.1
Spring Lib M 535 JUnit | org.junit.jupiter » jurit-jupiter-api JU a o
@ OpenHAB 374 e nit

Module "Junit-Jupiter-api” of Junit 5. Module "junit-jupiter-api" of JUnit 5.

JCenter 181

Last Release on Feb 11, 2021
--| Redhat GA 133

" dab bli -
£) adohepublc 12 2. Junit License EPL 2.0

Group JUnit | junit » junic

online-repo.2 374 JUnit is a unit testing framework for Java, created by Erich Gamma and Kent tegories Testing Frameworks
2| com.github 322 Last Release on Feb 13, 2021 - - = :
HomePage https://junit.org/junits/
/| org.apache 167
rhoar-verte3.5 121 3. JUnit Jupiter Engine Date (Feb 04, 2021)
com.day 114 JUhit | org.junit.jupiter » junit-jupiter-engine : : i
®| org.eclipse 86 Module "junit-jupiter-engine” of Junit 5. Files jar (171 KB) | View All
org.ow2 70 . .
Last Release on Feb 11, 2021 Repositories Central
| orgjboss 55
Used By 8,001 artifacts

Note: There is a new version for this artifact

New Version 5.8.0-M1

Maven | Gradle H SBT || Tvy || Grape || Leiningen || Buildr

|te.5r.1mpleme:1tetic:1 group: 'org.junit.jupiter', name: 'junit-jupiter-api', wversion: '5.7.1"

CS@AU Henrik Baerbak Christensen 17

.- Update from time to time!

AARHUS UNIVERSITET
 Lists security issues

Home =» org.apache.logging.log4j » log4j-core

@ Apache Log4j Core

LoGH)
Implementation for Apache Log4], a highly configurable logging tool that focuses on performance and low
garbage generation. It has a plugin architecture that makes it extensible and supports asynchronous logging
pased on LMAX Disruptor.

License Apache 2.0
Categories Logging Frameworks

K #54 in MvnRepository (See Top Artifacts)
Ranking
#6 in Logging Frameworks

Used By 8,444 artifacts

[central (54) || Redhat Ga (23) || RedhatEa (3) | Gael () |[1cM (3 |

Version Vulnerabilities Repository Usag Date

2.18x 2.18.0 444 Jul 02, 2022
2.17.2 Central 1,155 Feb 27, 2022

2,146 Dec 27, 2021

2 vulnerabilities 954 Dec 18, 2021

2.16.x 2.16.0 3 vulnerabilities 979 Dec 13, 2021
2.15x 2.15.0 5 vulnerabilities 1,170 Dec 10, 2021
2.14.1 8 vulnerabilities 1,089 Mar 12, 2021

2.14.x

CS@AU Henrik Baerbak Christensen 18

i Gradle

AARHUS UNIVERSITET

« Gradle combines both declarative and procedural

If you follow ‘gradle conventions’ it knows what you want to do
gradle test, eftc.

And ‘task’ let you write complete groovy code, if you need it

1] task jacocoMer - "cuc:Mer'ge! {
° But —_ norma”y you don t' dependsOn subprojects.jacocoTestReport)
b r‘utpro]elt‘: e rojec
Some subprojec
/ no tests. To a
/ a jacoco report director

// just add an empty file
task hello { if (subproject.jacoco.repor xists()) {
xecutionData subproject.tasks.withType(Test)
doLast { ;

1
cutionData = project.files([])

println 'tutorialspoint’

[

llClRCl(!tRep(!It(t ype: Jac
ption = 'Generates an
dependaﬁn(]m ocoMergeAll)

=]

sourceSets.main.allSou
Sets.main.allSourc
rceSets.main.output)
coco/jacocoMergeAll.exec")

reports {
html.enabled = true
> led = false

CS@AU Henrik Baerbak Christensen

19

/v Analysis
AARHUS UNIVERSITET E S ;
o A target. This is the goal that I want, like “compile :

e A list of dependencies. Targets depend upon eac Predefinec
you must first have compiled all source code. Thus the execution target de-
pends upon the compilation target. The build description must provide a way

to state such dependencies.
Fredaetrtineg
e Procedures. The procedures are associated with t

to meet the goal of the target, like how to compile the system. For instance
the compile goal must have an associated procedure that describes the steps
necessary to compile all source files—in this case call javac on all files.

e A set of properties. Variables and constants are important to improve readabil-
ity in programming languages, and build descriptions are no different. Proper-
ties are variables that you can assign a value in a single place and use it in your
procedures.

CS@AU Henrik Baerbak Christensen 20

eV In SWEA...

AARHUS UNIVERSITET
« Build management using Gradle is a postulate and

requirement

— No exercises in making Gradle targets, groovy code, etc.

* Required for easy hand-in and easing the TA work

CS@AU Henrik Baerbak Christensen 21

/v IntelliJ

AARHUS UNIVERSITET
* Why not just use Intellid? Build Module 'paystationt
]] Rebuild Module 'paystatio
— ltdoes it a”, rlght'? ¥ ".te€ p Run'All Tests'
- # Debug'All Tests'
d Answer “ € Run'All Tests' with Covera
— True but...

— Gradle can do stuff that Intellid can not.

/5 5

— Servers do not have a
graphical interface!

CS@AU Henrik Baerbak Christensen 22

/v

AARHUS UNIVERSITET

CS@AU

Other BM tools

Henrik Baerbak Christensen

23

eV Maven

AARHUS UNIVERSITET
* Antis pretty old...

— It is a Domain Specific Language and procedural
» Tasks define ‘what to do’

« Maven No support for running code ®

— ‘Convention over configuration’

* You follow the conventions and then Maven knows all the tasks!
— ltis a DSL and it is declarative

* mvn compile, mvn test, mvn install
— Very very good for publishing libraries on Maven repository
— Maven directly supports dependency management (POM)

» Ant requires help from lvy to do that

CS@AU Henrik Baerbak Christensen 24

VeV Maven POM

AARHUS UNIVERSITET
« Basic POM just states what the identity of your project is

<project sxmlns="http://maven.apache.org/POM/4.6.8"
xmlns:xsi="http://www.w3.0rg/2601/XMLSchema-instance”
xsi:schemalocation="http://maven.apache.org/POM/4.0.8
http://maven.apache.org/xsd/maven-4.8.8.xsd">
<modelVersion>4.8.8</modelVersionz

<groupld>com.companyname.project-group</groupld:
<artifactId:project</artifactId:

<wversion»l.8</versions

</project>

 Note:

— This simple POM can handle every classic aspect (except
running a program!)

* Yeah — we all love XML ©

CS@AU Henrik Baerbak Christensen

25

