
Software Engineering

and Architecture

Build Management

Henrik Bærbak Christensen 2

Motivation

• Oracle provides Java SDK free of charge

– provides standard command line tools: javac, java, ...

• These are sufficient only for small systems

– javac only compile one directory at a time

– javac recompiles everything every time

• Large systems require many tasks

– manage resources (graphics, sound, config files)

– deployment (making jars, copying files, upload to repos)

– management (javadoc, coverage, version control)

• Reliability require reliable processing

– Creating the system exactly the same way every time

Modern IDEs hide the fact

• IntelliJ, Visual Studio, etc. include

build management tools

– Compile all (touched) files, etc.

• But what do you do when your

code is on a server in Helsinki?

– Only the “shell/commandline” available

CS@AU Henrik Bærbak Christensen 3

Henrik Bærbak Christensen 4

Build-Management

• This problem is denoted:

• Computer Scientists’ standard solution: a tool...

• The tool read a build-description

• Example: Make (Feldmann, 1979)

History…

• Make

CS@AU Henrik Bærbak Christensen 5

The Two Ways

• Programming languages comes in flavors

– Procedural languages

• ‘express how to achieve a goal’

– Declarative languages

• ‘express what goal you want to achieve’

• Old time build languages were procedural (ex: make, Ant)

– Write code to compile all source files

• Modern build languages are declarative (almost)

– ‘compileJava’ is built into the system

CS@AU Henrik Bærbak Christensen 6

Henrik Bærbak Christensen 7

Script Parts

Henrik Bærbak Christensen 8

Apache Ant

• Ant is a build-management tool geared towards Java

– ☺ has some strong build-in behavior

• javac on source trees and does smart recompile

– ☺ independent of large IDEs

–  was created on the XML buzzword wave so it is verbose

–  is very evolutionary in its design

• Do the same thing in a zillion different ways

– No ‘conceptual integrity’

Example

• Targets

– ‘test’ …

• Dependencies

– ‘test’ d.o. ‘build-all’ d.o. …

• Procedures

– <javac ….>

• Properties

– {$build-directory}

CS@AU Henrik Bærbak Christensen 9

As In

CS@AU Henrik Bærbak Christensen 10

Gradle in SWEA

In 2018 Ant was put to rest…

Gradle

• Gradle is a convention-based build-management tool

– Convention over configuration is the mantra!

• Which means

– You cannot see a damn thing about what it does in its build

description (build.gradle) !!!   

– You have to know all the conventions or google your butts off 

• Conventions:

– A fixed set of targets are defined (compileJava, test, …)

– The source folder hierarchy and naming are hard coded!

– The ‘build description’ is in build.gradle in the project root

• A bit of help: ‘gradle tasks’ will display all known targets.

CS@AU Henrik Bærbak Christensen 12

And One BIG Nuisance

• Gradle developers are not afraid of none-backward-

compatible changes   

– Indeed they syntax and semantics have slightly or in code-

breaking ways changed 30 times since I started using Gradle



• So many hours wasted on absolutely nothing…

– Beware of slides that may contain old-style gradle 

CS@AU Henrik Bærbak Christensen 13

Gradle build.gradle

• The simplest build.gradle file for java dev, contains one

line

– apply plugin: ‘java’

• And now you can do all basic BM tasks (except running a

program! ☺)

– gradle test

• Will compile all production

code, all test code, and

execute all Junit code

in the ‘test’ source tree

CS@AU Henrik Bærbak Christensen 14

Gradle

• How does it work? Magic???

• By convention

– You must put your code in the right folders!

• src/main/java/HERE

• src/test/java/HERE

– Predefined targets

• Like ‘test’, ‘compileJava’, …

• By plugins

– Which are procedural groovy code to inject into the gradle

framework

• (‘framework’ is a central topic of this course)

CS@AU Henrik Bærbak Christensen 15

Gradle

• Gradle is also a dependency-management tool

• Ex: we need

hamcrest

• Gradle will download ‘org.hamcrest….:2.2’ from MavenCentral on the

internet, and set the classpath correctly

CS@AU Henrik Bærbak Christensen 16

MavenCentral

• Find libraries on ‘www.mvnrepository.com’

CS@AU Henrik Bærbak Christensen 17

Update from time to time!

• Lists security issues

CS@AU Henrik Bærbak Christensen 18

Gradle

• Gradle combines both declarative and procedural

– If you follow ‘gradle conventions’ it knows what you want to do

• gradle test, etc.

– And ‘task’ let you write complete groovy code, if you need it

• But – normally you don’t!

CS@AU Henrik Bærbak Christensen 19

Analysis

CS@AU Henrik Bærbak Christensen 20

Predefined

Predefined

Predefined

In SWEA…

• Build management using Gradle is a postulate and

requirement

– No exercises in making Gradle targets, groovy code, etc.

• Required for easy hand-in and easing the TA work

• Hard requirement: ‘gradle test jacocoTestReport’

must always run without errors, and must always

execute all your tests!

CS@AU Henrik Bærbak Christensen 21

IntelliJ

• Why not just use IntelliJ?

– It does it all, right?

• Answer

– True but…

– Gradle can do stuff that IntelliJ can not.

– Servers do not have a

graphical interface!

CS@AU Henrik Bærbak Christensen 22

Other BM tools

CS@AU Henrik Bærbak Christensen 23

Maven

• Ant is pretty old…

– It is a Domain Specific Language and procedural

• Tasks define ‘what to do’

• Maven

– ‘Convention over configuration’

• You follow the conventions and then Maven knows all the tasks!

– It is a DSL and it is declarative

• mvn compile, mvn test, mvn install

– Very very good for publishing libraries on Maven repository

– Maven directly supports dependency management (POM)

• Ant requires help from Ivy to do that

CS@AU Henrik Bærbak Christensen 24

No support for running code

Maven POM

• Basic POM just states what the identity of your project is

• Note:

– This simple POM can handle every classic aspect (except

running a program!)

• Yeah – we all love XML ☺

CS@AU Henrik Bærbak Christensen 25

